Cremona's table of elliptic curves

Curve 38064bd1

38064 = 24 · 3 · 13 · 61



Data for elliptic curve 38064bd1

Field Data Notes
Atkin-Lehner 2- 3- 13- 61+ Signs for the Atkin-Lehner involutions
Class 38064bd Isogeny class
Conductor 38064 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 147456 Modular degree for the optimal curve
Δ 680538868500816 = 24 · 38 · 134 · 613 Discriminant
Eigenvalues 2- 3-  2  2 -2 13-  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-71097,7164270] [a1,a2,a3,a4,a6]
j 2484069056663830528/42533679281301 j-invariant
L 4.0850410241405 L(r)(E,1)/r!
Ω 0.5106301280203 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 9516a1 114192bw1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations