Cremona's table of elliptic curves

Curve 38157c1

38157 = 3 · 7 · 23 · 79



Data for elliptic curve 38157c1

Field Data Notes
Atkin-Lehner 3- 7+ 23+ 79+ Signs for the Atkin-Lehner involutions
Class 38157c Isogeny class
Conductor 38157 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 11520 Modular degree for the optimal curve
Δ -117790659 = -1 · 33 · 74 · 23 · 79 Discriminant
Eigenvalues  0 3- -1 7+ -3 -6  0 -6 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-211,1222] [a1,a2,a3,a4,a6]
Generators [-134:143:8] [-2:40:1] Generators of the group modulo torsion
j -1043825065984/117790659 j-invariant
L 7.8544938630015 L(r)(E,1)/r!
Ω 1.8155223269303 Real period
R 0.721049965116 Regulator
r 2 Rank of the group of rational points
S 0.99999999999987 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 114471l1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations