Cremona's table of elliptic curves

Curve 38157h1

38157 = 3 · 7 · 23 · 79



Data for elliptic curve 38157h1

Field Data Notes
Atkin-Lehner 3- 7+ 23- 79+ Signs for the Atkin-Lehner involutions
Class 38157h Isogeny class
Conductor 38157 Conductor
∏ cp 18 Product of Tamagawa factors cp
deg 44928 Modular degree for the optimal curve
Δ -5758005771 = -1 · 39 · 7 · 232 · 79 Discriminant
Eigenvalues -2 3- -3 7+  6 -2  0 -8 Hecke eigenvalues for primes up to 20
Equation [0,1,1,328,-2740] [a1,a2,a3,a4,a6]
Generators [19:-104:1] Generators of the group modulo torsion
j 3890635108352/5758005771 j-invariant
L 2.4281904092125 L(r)(E,1)/r!
Ω 0.71500950342451 Real period
R 0.18866807578436 Regulator
r 1 Rank of the group of rational points
S 0.99999999999882 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 114471h1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations