Cremona's table of elliptic curves

Curve 38425a1

38425 = 52 · 29 · 53



Data for elliptic curve 38425a1

Field Data Notes
Atkin-Lehner 5+ 29+ 53+ Signs for the Atkin-Lehner involutions
Class 38425a Isogeny class
Conductor 38425 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 61056 Modular degree for the optimal curve
Δ -337299453125 = -1 · 57 · 29 · 533 Discriminant
Eigenvalues  1  3 5+ -1 -3  4  2 -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,1058,24341] [a1,a2,a3,a4,a6]
Generators [-132:3791:27] Generators of the group modulo torsion
j 8377795791/21587165 j-invariant
L 11.901320266212 L(r)(E,1)/r!
Ω 0.67273338723656 Real period
R 4.4227477378144 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 7685b1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations