Cremona's table of elliptic curves

Curve 39360i2

39360 = 26 · 3 · 5 · 41



Data for elliptic curve 39360i2

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 41- Signs for the Atkin-Lehner involutions
Class 39360i Isogeny class
Conductor 39360 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 18069980774400 = 216 · 38 · 52 · 412 Discriminant
Eigenvalues 2+ 3+ 5+ -4  0  2 -2 -8 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-6561,6561] [a1,a2,a3,a4,a6]
Generators [-79:160:1] [-40:451:1] Generators of the group modulo torsion
j 476672487844/275726025 j-invariant
L 6.6639675441051 L(r)(E,1)/r!
Ω 0.58433419194786 Real period
R 5.7021886070794 Regulator
r 2 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 39360ct2 4920j2 118080ch2 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations