Cremona's table of elliptic curves

Curve 39368f1

39368 = 23 · 7 · 19 · 37



Data for elliptic curve 39368f1

Field Data Notes
Atkin-Lehner 2- 7+ 19+ 37- Signs for the Atkin-Lehner involutions
Class 39368f Isogeny class
Conductor 39368 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 26112 Modular degree for the optimal curve
Δ 25467631616 = 211 · 72 · 193 · 37 Discriminant
Eigenvalues 2-  2 -1 7+  5 -4 -4 19+ Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-736,684] [a1,a2,a3,a4,a6]
Generators [-27:12:1] Generators of the group modulo torsion
j 21558430658/12435367 j-invariant
L 7.4313149082716 L(r)(E,1)/r!
Ω 1.0145179482318 Real period
R 3.6624856766815 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 78736f1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations