Cremona's table of elliptic curves

Curve 39882y1

39882 = 2 · 3 · 172 · 23



Data for elliptic curve 39882y1

Field Data Notes
Atkin-Lehner 2+ 3- 17+ 23- Signs for the Atkin-Lehner involutions
Class 39882y Isogeny class
Conductor 39882 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 440640 Modular degree for the optimal curve
Δ -30046373092291896 = -1 · 23 · 34 · 1710 · 23 Discriminant
Eigenvalues 2+ 3- -2  4  1  2 17+  1 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-127022,-19328200] [a1,a2,a3,a4,a6]
Generators [2418420:28867232:4913] Generators of the group modulo torsion
j -112425913/14904 j-invariant
L 5.7223859383159 L(r)(E,1)/r!
Ω 0.125517376176 Real period
R 11.39759711494 Regulator
r 1 Rank of the group of rational points
S 1.0000000000004 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 119646ca1 39882q1 Quadratic twists by: -3 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations