Cremona's table of elliptic curves

Curve 39984cs1

39984 = 24 · 3 · 72 · 17



Data for elliptic curve 39984cs1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 17+ Signs for the Atkin-Lehner involutions
Class 39984cs Isogeny class
Conductor 39984 Conductor
∏ cp 54 Product of Tamagawa factors cp
deg 580608 Modular degree for the optimal curve
Δ 2022667271443316736 = 220 · 39 · 78 · 17 Discriminant
Eigenvalues 2- 3-  3 7+  2  1 17+  0 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-319104,11372724] [a1,a2,a3,a4,a6]
Generators [-180:7938:1] Generators of the group modulo torsion
j 152186997697/85660416 j-invariant
L 9.3723744874988 L(r)(E,1)/r!
Ω 0.22593092945164 Real period
R 0.76821040364192 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 4998y1 119952ee1 39984co1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations