Cremona's table of elliptic curves

Curve 40200p1

40200 = 23 · 3 · 52 · 67



Data for elliptic curve 40200p1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 67+ Signs for the Atkin-Lehner involutions
Class 40200p Isogeny class
Conductor 40200 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 84480 Modular degree for the optimal curve
Δ -542700000000 = -1 · 28 · 34 · 58 · 67 Discriminant
Eigenvalues 2+ 3- 5-  2  2 -4  3 -1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-24708,1487088] [a1,a2,a3,a4,a6]
Generators [108:300:1] Generators of the group modulo torsion
j -16682228560/5427 j-invariant
L 7.8533060684548 L(r)(E,1)/r!
Ω 0.90534362105559 Real period
R 0.36143302783102 Regulator
r 1 Rank of the group of rational points
S 0.99999999999999 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 80400r1 120600ce1 40200w1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations