Cremona's table of elliptic curves

Curve 40368bl1

40368 = 24 · 3 · 292



Data for elliptic curve 40368bl1

Field Data Notes
Atkin-Lehner 2- 3- 29+ Signs for the Atkin-Lehner involutions
Class 40368bl Isogeny class
Conductor 40368 Conductor
∏ cp 28 Product of Tamagawa factors cp
deg 282240 Modular degree for the optimal curve
Δ -603607671804528 = -1 · 24 · 37 · 297 Discriminant
Eigenvalues 2- 3- -4  3 -1 -3  5  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-42330,-3568581] [a1,a2,a3,a4,a6]
Generators [2298:22707:8] Generators of the group modulo torsion
j -881395456/63423 j-invariant
L 6.0552559104177 L(r)(E,1)/r!
Ω 0.16573399061778 Real period
R 1.3048568905604 Regulator
r 1 Rank of the group of rational points
S 1.0000000000004 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10092c1 121104cj1 1392j1 Quadratic twists by: -4 -3 29


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations