Cremona's table of elliptic curves

Curve 40368w1

40368 = 24 · 3 · 292



Data for elliptic curve 40368w1

Field Data Notes
Atkin-Lehner 2- 3+ 29+ Signs for the Atkin-Lehner involutions
Class 40368w Isogeny class
Conductor 40368 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 604800 Modular degree for the optimal curve
Δ -3960269934709508208 = -1 · 24 · 315 · 297 Discriminant
Eigenvalues 2- 3+ -2 -1  3  5  1  6 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-79334,-96105057] [a1,a2,a3,a4,a6]
j -5802287872/416118303 j-invariant
L 1.7460934751635 L(r)(E,1)/r!
Ω 0.10913084219748 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10092h1 121104bx1 1392n1 Quadratic twists by: -4 -3 29


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations