Cremona's table of elliptic curves

Curve 40425bd2

40425 = 3 · 52 · 72 · 11



Data for elliptic curve 40425bd2

Field Data Notes
Atkin-Lehner 3+ 5- 7- 11+ Signs for the Atkin-Lehner involutions
Class 40425bd Isogeny class
Conductor 40425 Conductor
∏ cp 6 Product of Tamagawa factors cp
Δ -244244976666796875 = -1 · 3 · 58 · 76 · 116 Discriminant
Eigenvalues  0 3+ 5- 7- 11+  1  6  7 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,155167,-3503557] [a1,a2,a3,a4,a6]
Generators [17317:2279337:1] Generators of the group modulo torsion
j 8990228480/5314683 j-invariant
L 4.4209811629613 L(r)(E,1)/r!
Ω 0.18296976807268 Real period
R 4.0270597792658 Regulator
r 1 Rank of the group of rational points
S 0.99999999999975 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 121275gi2 40425ca2 825c2 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations