Cremona's table of elliptic curves

Curve 40425bt1

40425 = 3 · 52 · 72 · 11



Data for elliptic curve 40425bt1

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 11+ Signs for the Atkin-Lehner involutions
Class 40425bt Isogeny class
Conductor 40425 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 20736 Modular degree for the optimal curve
Δ -1238015625 = -1 · 3 · 56 · 74 · 11 Discriminant
Eigenvalues -1 3- 5+ 7+ 11+ -4 -3  1 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-638,-6483] [a1,a2,a3,a4,a6]
j -765625/33 j-invariant
L 0.94753911181289 L(r)(E,1)/r!
Ω 0.47376955592014 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 121275cr1 1617a1 40425o1 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations