Cremona's table of elliptic curves

Curve 41070b3

41070 = 2 · 3 · 5 · 372



Data for elliptic curve 41070b3

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 37+ Signs for the Atkin-Lehner involutions
Class 41070b Isogeny class
Conductor 41070 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 4.0887662199394E+24 Discriminant
Eigenvalues 2+ 3+ 5+  0  4  2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-40145953,10979326453] [a1,a2,a3,a4,a6]
Generators [17320198836608520237:-6606957180849770864503:119117275088427] Generators of the group modulo torsion
j 2788936974993502801/1593609593601600 j-invariant
L 3.5188649615738 L(r)(E,1)/r!
Ω 0.066919778299786 Real period
R 26.291666312813 Regulator
r 1 Rank of the group of rational points
S 1.0000000000008 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 123210dh3 1110k3 Quadratic twists by: -3 37


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations