Cremona's table of elliptic curves

Curve 4128g1

4128 = 25 · 3 · 43



Data for elliptic curve 4128g1

Field Data Notes
Atkin-Lehner 2+ 3- 43- Signs for the Atkin-Lehner involutions
Class 4128g Isogeny class
Conductor 4128 Conductor
∏ cp 220 Product of Tamagawa factors cp
deg 42240 Modular degree for the optimal curve
Δ -106668460655087616 = -1 · 212 · 311 · 435 Discriminant
Eigenvalues 2+ 3- -3  1 -1  3 -6  1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-660097,-207241201] [a1,a2,a3,a4,a6]
Generators [1799:66564:1] Generators of the group modulo torsion
j -7765826776893057088/26042104652121 j-invariant
L 3.7352781465798 L(r)(E,1)/r!
Ω 0.083729860365596 Real period
R 0.20277756293601 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 4128j1 8256f1 12384r1 103200bm1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations