Cremona's table of elliptic curves

Curve 41325h2

41325 = 3 · 52 · 19 · 29



Data for elliptic curve 41325h2

Field Data Notes
Atkin-Lehner 3+ 5- 19+ 29- Signs for the Atkin-Lehner involutions
Class 41325h Isogeny class
Conductor 41325 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 123299956125 = 32 · 53 · 194 · 292 Discriminant
Eigenvalues  1 3+ 5-  2  4  0 -2 19+ Hecke eigenvalues for primes up to 20
Equation [1,1,0,-1330,-8525] [a1,a2,a3,a4,a6]
Generators [46:151:1] Generators of the group modulo torsion
j 2083908933917/986399649 j-invariant
L 6.4061697334457 L(r)(E,1)/r!
Ω 0.82799233203277 Real period
R 1.9342479047222 Regulator
r 1 Rank of the group of rational points
S 1.0000000000006 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 123975bi2 41325m2 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations