Cremona's table of elliptic curves

Curve 41382j1

41382 = 2 · 32 · 112 · 19



Data for elliptic curve 41382j1

Field Data Notes
Atkin-Lehner 2+ 3- 11+ 19+ Signs for the Atkin-Lehner involutions
Class 41382j Isogeny class
Conductor 41382 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 25344 Modular degree for the optimal curve
Δ 294970896 = 24 · 36 · 113 · 19 Discriminant
Eigenvalues 2+ 3-  2  4 11+  6 -4 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-171,-203] [a1,a2,a3,a4,a6]
j 571787/304 j-invariant
L 2.8042915865997 L(r)(E,1)/r!
Ω 1.4021457933616 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4598l1 41382br1 Quadratic twists by: -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations