Cremona's table of elliptic curves

Curve 4150l2

4150 = 2 · 52 · 83



Data for elliptic curve 4150l2

Field Data Notes
Atkin-Lehner 2- 5+ 83- Signs for the Atkin-Lehner involutions
Class 4150l Isogeny class
Conductor 4150 Conductor
∏ cp 36 Product of Tamagawa factors cp
Δ -14294675000000 = -1 · 26 · 58 · 833 Discriminant
Eigenvalues 2- -1 5+ -5  3  4 -3  8 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-20938,-1188969] [a1,a2,a3,a4,a6]
Generators [215:1967:1] Generators of the group modulo torsion
j -64969656240601/914859200 j-invariant
L 4.0548744355032 L(r)(E,1)/r!
Ω 0.19827682362095 Real period
R 0.56807144137797 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 33200u2 37350o2 830a2 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations