Cremona's table of elliptic curves

Curve 41745k1

41745 = 3 · 5 · 112 · 23



Data for elliptic curve 41745k1

Field Data Notes
Atkin-Lehner 3+ 5- 11- 23+ Signs for the Atkin-Lehner involutions
Class 41745k Isogeny class
Conductor 41745 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 6720 Modular degree for the optimal curve
Δ -4800675 = -1 · 3 · 52 · 112 · 232 Discriminant
Eigenvalues  0 3+ 5- -1 11- -2  0  5 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,15,98] [a1,a2,a3,a4,a6]
Generators [2:-12:1] Generators of the group modulo torsion
j 2883584/39675 j-invariant
L 3.5995131075464 L(r)(E,1)/r!
Ω 1.8051607104279 Real period
R 0.49850313697249 Regulator
r 1 Rank of the group of rational points
S 0.99999999999867 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 125235s1 41745j1 Quadratic twists by: -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations