Cremona's table of elliptic curves

Curve 41832y1

41832 = 23 · 32 · 7 · 83



Data for elliptic curve 41832y1

Field Data Notes
Atkin-Lehner 2- 3- 7- 83+ Signs for the Atkin-Lehner involutions
Class 41832y Isogeny class
Conductor 41832 Conductor
∏ cp 64 Product of Tamagawa factors cp
deg 73728 Modular degree for the optimal curve
Δ 1004156745984 = 28 · 39 · 74 · 83 Discriminant
Eigenvalues 2- 3- -2 7-  0 -2 -6 -8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-7311,235730] [a1,a2,a3,a4,a6]
Generators [-95:270:1] [-71:630:1] Generators of the group modulo torsion
j 231572279248/5380641 j-invariant
L 8.4617535595392 L(r)(E,1)/r!
Ω 0.87656290175358 Real period
R 2.4133332424323 Regulator
r 2 Rank of the group of rational points
S 0.99999999999996 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 83664q1 13944d1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations