Cremona's table of elliptic curves

Curve 41952k1

41952 = 25 · 3 · 19 · 23



Data for elliptic curve 41952k1

Field Data Notes
Atkin-Lehner 2- 3+ 19+ 23+ Signs for the Atkin-Lehner involutions
Class 41952k Isogeny class
Conductor 41952 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 65536 Modular degree for the optimal curve
Δ -1764046024704 = -1 · 212 · 34 · 19 · 234 Discriminant
Eigenvalues 2- 3+  3  1 -3 -4  5 19+ Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-3149,-92283] [a1,a2,a3,a4,a6]
j -843372923392/430675299 j-invariant
L 2.4891703264191 L(r)(E,1)/r!
Ω 0.31114629080772 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 41952q1 83904bp1 125856j1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations