Cremona's table of elliptic curves

Curve 42432bm4

42432 = 26 · 3 · 13 · 17



Data for elliptic curve 42432bm4

Field Data Notes
Atkin-Lehner 2- 3+ 13+ 17- Signs for the Atkin-Lehner involutions
Class 42432bm Isogeny class
Conductor 42432 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 47512977408 = 215 · 38 · 13 · 17 Discriminant
Eigenvalues 2- 3+  2  0 -4 13+ 17- -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-9537,-355167] [a1,a2,a3,a4,a6]
Generators [3594:74115:8] Generators of the group modulo torsion
j 2927889364616/1449981 j-invariant
L 5.2314384393736 L(r)(E,1)/r!
Ω 0.48312078567553 Real period
R 5.4142137892649 Regulator
r 1 Rank of the group of rational points
S 1.0000000000007 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 42432cf4 21216p4 127296ce4 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations