Cremona's table of elliptic curves

Curve 42630bw1

42630 = 2 · 3 · 5 · 72 · 29



Data for elliptic curve 42630bw1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 7- 29- Signs for the Atkin-Lehner involutions
Class 42630bw Isogeny class
Conductor 42630 Conductor
∏ cp 260 Product of Tamagawa factors cp
deg 5391360 Modular degree for the optimal curve
Δ -2.6392386140703E+23 Discriminant
Eigenvalues 2+ 3- 5- 7-  1 -3 -4  5 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-26014273,56734744028] [a1,a2,a3,a4,a6]
Generators [-1046:-287230:1] Generators of the group modulo torsion
j -16548953231297345532409/2243315807248912200 j-invariant
L 5.6083049928241 L(r)(E,1)/r!
Ω 0.09502983386546 Real period
R 0.22698559958633 Regulator
r 1 Rank of the group of rational points
S 1.0000000000006 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 127890er1 6090b1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations