Cremona's table of elliptic curves

Curve 42840q1

42840 = 23 · 32 · 5 · 7 · 17



Data for elliptic curve 42840q1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7- 17+ Signs for the Atkin-Lehner involutions
Class 42840q Isogeny class
Conductor 42840 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 29245440 Modular degree for the optimal curve
Δ 5.0636676636972E+26 Discriminant
Eigenvalues 2+ 3- 5+ 7- -2  4 17+  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2712102798,-54352708820503] [a1,a2,a3,a4,a6]
Generators [-89017005130321370083330528002744759679660609408:-27150980871863524409537384642319994288800611637:2994977745192806181008788995118860905285801] Generators of the group modulo torsion
j 189144902490810055678958872576/43412788611944537428125 j-invariant
L 6.0049419219652 L(r)(E,1)/r!
Ω 0.020920834296091 Real period
R 71.757916498186 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 85680i1 14280bl1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations