Cremona's table of elliptic curves

Curve 43225c1

43225 = 52 · 7 · 13 · 19



Data for elliptic curve 43225c1

Field Data Notes
Atkin-Lehner 5+ 7- 13+ 19- Signs for the Atkin-Lehner involutions
Class 43225c Isogeny class
Conductor 43225 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 84480 Modular degree for the optimal curve
Δ 110038017578125 = 510 · 74 · 13 · 192 Discriminant
Eigenvalues  0  1 5+ 7- -4 13+  2 19- Hecke eigenvalues for primes up to 20
Equation [0,1,1,-13333,-315006] [a1,a2,a3,a4,a6]
Generators [-48:465:1] Generators of the group modulo torsion
j 26843545600/11267893 j-invariant
L 4.9028599951189 L(r)(E,1)/r!
Ω 0.46121187513296 Real period
R 1.3287981780902 Regulator
r 1 Rank of the group of rational points
S 0.99999999999935 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 43225f1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations