Cremona's table of elliptic curves

Curve 45150ci1

45150 = 2 · 3 · 52 · 7 · 43



Data for elliptic curve 45150ci1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 7- 43+ Signs for the Atkin-Lehner involutions
Class 45150ci Isogeny class
Conductor 45150 Conductor
∏ cp 256 Product of Tamagawa factors cp
deg 196608 Modular degree for the optimal curve
Δ -167253660000000 = -1 · 28 · 34 · 57 · 74 · 43 Discriminant
Eigenvalues 2- 3+ 5+ 7-  4 -2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,2537,-619219] [a1,a2,a3,a4,a6]
Generators [89:522:1] Generators of the group modulo torsion
j 115572468311/10704234240 j-invariant
L 8.1208629734295 L(r)(E,1)/r!
Ω 0.27225289920265 Real period
R 1.8642737591618 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 9030h1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations