Cremona's table of elliptic curves

Curve 45423d1

45423 = 32 · 72 · 103



Data for elliptic curve 45423d1

Field Data Notes
Atkin-Lehner 3- 7- 103+ Signs for the Atkin-Lehner involutions
Class 45423d Isogeny class
Conductor 45423 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 119808 Modular degree for the optimal curve
Δ -1217145017502603 = -1 · 315 · 77 · 103 Discriminant
Eigenvalues  0 3-  0 7-  3  4  3 -2 Hecke eigenvalues for primes up to 20
Equation [0,0,1,11760,1605154] [a1,a2,a3,a4,a6]
Generators [88:1822:1] Generators of the group modulo torsion
j 2097152000/14191443 j-invariant
L 5.171360714071 L(r)(E,1)/r!
Ω 0.35290763179814 Real period
R 1.8316976767162 Regulator
r 1 Rank of the group of rational points
S 0.99999999999817 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 15141a1 6489e1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations