Cremona's table of elliptic curves

Curve 45570cv1

45570 = 2 · 3 · 5 · 72 · 31



Data for elliptic curve 45570cv1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7- 31- Signs for the Atkin-Lehner involutions
Class 45570cv Isogeny class
Conductor 45570 Conductor
∏ cp 640 Product of Tamagawa factors cp
deg 983040 Modular degree for the optimal curve
Δ -9.486608178217E+18 Discriminant
Eigenvalues 2- 3- 5+ 7-  0  2 -6  4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-292531,-160237855] [a1,a2,a3,a4,a6]
Generators [1166:-33511:1] Generators of the group modulo torsion
j -23531588875176481/80634839040000 j-invariant
L 10.558221046271 L(r)(E,1)/r!
Ω 0.094327134171982 Real period
R 0.69957475246478 Regulator
r 1 Rank of the group of rational points
S 1.0000000000018 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6510p1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations