Cremona's table of elliptic curves

Curve 45650h1

45650 = 2 · 52 · 11 · 83



Data for elliptic curve 45650h1

Field Data Notes
Atkin-Lehner 2+ 5+ 11- 83- Signs for the Atkin-Lehner involutions
Class 45650h Isogeny class
Conductor 45650 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 13824 Modular degree for the optimal curve
Δ -228250000 = -1 · 24 · 56 · 11 · 83 Discriminant
Eigenvalues 2+  0 5+  3 11- -1  0 -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,133,-459] [a1,a2,a3,a4,a6]
Generators [9:33:1] Generators of the group modulo torsion
j 16581375/14608 j-invariant
L 4.7433256199298 L(r)(E,1)/r!
Ω 0.97135104265891 Real period
R 1.2208062306034 Regulator
r 1 Rank of the group of rational points
S 1.0000000000011 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 1826b1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations