Cremona's table of elliptic curves

Curve 45815k3

45815 = 5 · 72 · 11 · 17



Data for elliptic curve 45815k3

Field Data Notes
Atkin-Lehner 5+ 7- 11- 17+ Signs for the Atkin-Lehner involutions
Class 45815k Isogeny class
Conductor 45815 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ -5.6573124277455E+27 Discriminant
Eigenvalues -1  0 5+ 7- 11- -6 17+  4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-1198397983,16373195119502] [a1,a2,a3,a4,a6]
Generators [12641208185095845:732758540731190909:750841571969] Generators of the group modulo torsion
j -1617851589412849174816817841/48086362210860055534375 j-invariant
L 2.0610373887378 L(r)(E,1)/r!
Ω 0.0425824595655 Real period
R 24.200544188546 Regulator
r 1 Rank of the group of rational points
S 0.99999999999714 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6545f4 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations