Cremona's table of elliptic curves

Curve 46354z1

46354 = 2 · 72 · 11 · 43



Data for elliptic curve 46354z1

Field Data Notes
Atkin-Lehner 2- 7- 11+ 43+ Signs for the Atkin-Lehner involutions
Class 46354z Isogeny class
Conductor 46354 Conductor
∏ cp 128 Product of Tamagawa factors cp
deg 319488 Modular degree for the optimal curve
Δ -12075037612244992 = -1 · 216 · 77 · 112 · 432 Discriminant
Eigenvalues 2-  2  2 7- 11+  0  0  0 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-32782,5745739] [a1,a2,a3,a4,a6]
Generators [49:2039:1] Generators of the group modulo torsion
j -33116363266897/102636126208 j-invariant
L 14.971020712617 L(r)(E,1)/r!
Ω 0.35261696748961 Real period
R 1.3267778933042 Regulator
r 1 Rank of the group of rational points
S 1.0000000000003 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6622h1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations