Cremona's table of elliptic curves

Curve 46368bq1

46368 = 25 · 32 · 7 · 23



Data for elliptic curve 46368bq1

Field Data Notes
Atkin-Lehner 2- 3- 7- 23+ Signs for the Atkin-Lehner involutions
Class 46368bq Isogeny class
Conductor 46368 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 86016 Modular degree for the optimal curve
Δ -91393831872 = -1 · 26 · 36 · 7 · 234 Discriminant
Eigenvalues 2- 3-  4 7-  4  4  6 -2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-3153,-69680] [a1,a2,a3,a4,a6]
j -74299881664/1958887 j-invariant
L 5.7251287414564 L(r)(E,1)/r!
Ω 0.31806270787556 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 9 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 46368bn1 92736fe1 5152b1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations