Cremona's table of elliptic curves

Curve 46530d1

46530 = 2 · 32 · 5 · 11 · 47



Data for elliptic curve 46530d1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 11+ 47+ Signs for the Atkin-Lehner involutions
Class 46530d Isogeny class
Conductor 46530 Conductor
∏ cp 20 Product of Tamagawa factors cp
deg 401280 Modular degree for the optimal curve
Δ -198752167968750 = -1 · 2 · 39 · 510 · 11 · 47 Discriminant
Eigenvalues 2+ 3+ 5-  2 11+ -4 -5  4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-317184,-68680810] [a1,a2,a3,a4,a6]
j -179294515464186387/10097656250 j-invariant
L 2.0117323748884 L(r)(E,1)/r!
Ω 0.10058661874382 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 46530p1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations