Cremona's table of elliptic curves

Curve 465b4

465 = 3 · 5 · 31



Data for elliptic curve 465b4

Field Data Notes
Atkin-Lehner 3- 5- 31+ Signs for the Atkin-Lehner involutions
Class 465b Isogeny class
Conductor 465 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ -13852815 = -1 · 3 · 5 · 314 Discriminant
Eigenvalues -1 3- 5- -4 -4  2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,60,15] [a1,a2,a3,a4,a6]
Generators [2:11:1] Generators of the group modulo torsion
j 23862997439/13852815 j-invariant
L 1.4675682334608 L(r)(E,1)/r!
Ω 1.3420007844678 Real period
R 2.187134687917 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 7440r4 29760f3 1395a4 2325b4 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations