Cremona's table of elliptic curves

Curve 46800em1

46800 = 24 · 32 · 52 · 13



Data for elliptic curve 46800em1

Field Data Notes
Atkin-Lehner 2- 3- 5- 13+ Signs for the Atkin-Lehner involutions
Class 46800em Isogeny class
Conductor 46800 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 49152 Modular degree for the optimal curve
Δ 174680064000 = 214 · 38 · 53 · 13 Discriminant
Eigenvalues 2- 3- 5-  0 -6 13+  0 -6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2235,-35350] [a1,a2,a3,a4,a6]
Generators [-26:72:1] [-25:70:1] Generators of the group modulo torsion
j 3307949/468 j-invariant
L 9.1386024257394 L(r)(E,1)/r!
Ω 0.70089017586989 Real period
R 3.2596413605019 Regulator
r 2 Rank of the group of rational points
S 0.99999999999996 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 5850bu1 15600bo1 46800fe1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations