Cremona's table of elliptic curves

Curve 47025bd1

47025 = 32 · 52 · 11 · 19



Data for elliptic curve 47025bd1

Field Data Notes
Atkin-Lehner 3- 5+ 11- 19+ Signs for the Atkin-Lehner involutions
Class 47025bd Isogeny class
Conductor 47025 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 40320 Modular degree for the optimal curve
Δ 925593075 = 311 · 52 · 11 · 19 Discriminant
Eigenvalues -1 3- 5+ -3 11- -7 -7 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-3425,77982] [a1,a2,a3,a4,a6]
Generators [38:-60:1] Generators of the group modulo torsion
j 243735630385/50787 j-invariant
L 1.8838921303282 L(r)(E,1)/r!
Ω 1.5280356386043 Real period
R 0.30822123560822 Regulator
r 1 Rank of the group of rational points
S 0.99999999999581 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 15675d1 47025br1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations