Cremona's table of elliptic curves

Curve 47190cb1

47190 = 2 · 3 · 5 · 112 · 13



Data for elliptic curve 47190cb1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 11- 13- Signs for the Atkin-Lehner involutions
Class 47190cb Isogeny class
Conductor 47190 Conductor
∏ cp 80 Product of Tamagawa factors cp
deg 102400 Modular degree for the optimal curve
Δ -1768726502400 = -1 · 210 · 3 · 52 · 116 · 13 Discriminant
Eigenvalues 2- 3+ 5-  2 11- 13- -4  2 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-6355,202577] [a1,a2,a3,a4,a6]
Generators [-5:486:1] Generators of the group modulo torsion
j -16022066761/998400 j-invariant
L 9.3720416722398 L(r)(E,1)/r!
Ω 0.82489453653477 Real period
R 0.5680751451941 Regulator
r 1 Rank of the group of rational points
S 1.0000000000004 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 390f1 Quadratic twists by: -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations