Cremona's table of elliptic curves

Curve 48165k2

48165 = 3 · 5 · 132 · 19



Data for elliptic curve 48165k2

Field Data Notes
Atkin-Lehner 3+ 5- 13+ 19- Signs for the Atkin-Lehner involutions
Class 48165k Isogeny class
Conductor 48165 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ 12896630296875 = 32 · 56 · 136 · 19 Discriminant
Eigenvalues -1 3+ 5-  2  2 13+  2 19- Hecke eigenvalues for primes up to 20
Equation [1,1,1,-15805,-751600] [a1,a2,a3,a4,a6]
Generators [-82:78:1] Generators of the group modulo torsion
j 90458382169/2671875 j-invariant
L 3.813811717255 L(r)(E,1)/r!
Ω 0.42656504327992 Real period
R 1.4901251197752 Regulator
r 1 Rank of the group of rational points
S 0.99999999999964 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 285b2 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations