Cremona's table of elliptic curves

Curve 4830y3

4830 = 2 · 3 · 5 · 7 · 23



Data for elliptic curve 4830y3

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7- 23- Signs for the Atkin-Lehner involutions
Class 4830y Isogeny class
Conductor 4830 Conductor
∏ cp 800 Product of Tamagawa factors cp
Δ 1.3650704956055E+22 Discriminant
Eigenvalues 2- 3+ 5- 7-  0 -6 -6  4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-11255780,-13408567675] [a1,a2,a3,a4,a6]
Generators [-2207:27353:1] Generators of the group modulo torsion
j 157706830105239346386477121/13650704956054687500000 j-invariant
L 5.0578881623537 L(r)(E,1)/r!
Ω 0.082879288665191 Real period
R 0.30513583331935 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 38640cu3 14490n4 24150x3 33810cx3 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations