Cremona's table of elliptic curves

Curve 48555g1

48555 = 32 · 5 · 13 · 83



Data for elliptic curve 48555g1

Field Data Notes
Atkin-Lehner 3- 5+ 13+ 83- Signs for the Atkin-Lehner involutions
Class 48555g Isogeny class
Conductor 48555 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 37888 Modular degree for the optimal curve
Δ 19173155625 = 37 · 54 · 132 · 83 Discriminant
Eigenvalues  1 3- 5+  0  0 13+ -6  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-7965,-271544] [a1,a2,a3,a4,a6]
Generators [-410:277:8] Generators of the group modulo torsion
j 76662714770641/26300625 j-invariant
L 5.4957118735437 L(r)(E,1)/r!
Ω 0.50537004394044 Real period
R 2.718657318253 Regulator
r 1 Rank of the group of rational points
S 1.000000000001 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 16185c1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations