Cremona's table of elliptic curves

Curve 49010l1

49010 = 2 · 5 · 132 · 29



Data for elliptic curve 49010l1

Field Data Notes
Atkin-Lehner 2- 5+ 13+ 29+ Signs for the Atkin-Lehner involutions
Class 49010l Isogeny class
Conductor 49010 Conductor
∏ cp 63 Product of Tamagawa factors cp
deg 208656 Modular degree for the optimal curve
Δ -217125748736000 = -1 · 221 · 53 · 134 · 29 Discriminant
Eigenvalues 2-  1 5+ -1  6 13+ -6  2 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-11411,849185] [a1,a2,a3,a4,a6]
j -5753389782049/7602176000 j-invariant
L 3.5424215927538 L(r)(E,1)/r!
Ω 0.50606022763647 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 3 Number of elements in the torsion subgroup
Twists 49010f1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations