Cremona's table of elliptic curves

Curve 50232q1

50232 = 23 · 3 · 7 · 13 · 23



Data for elliptic curve 50232q1

Field Data Notes
Atkin-Lehner 2- 3+ 7+ 13- 23- Signs for the Atkin-Lehner involutions
Class 50232q Isogeny class
Conductor 50232 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 13056 Modular degree for the optimal curve
Δ 4822272 = 28 · 32 · 7 · 13 · 23 Discriminant
Eigenvalues 2- 3+ -2 7+ -1 13-  3 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-369,2853] [a1,a2,a3,a4,a6]
Generators [12:3:1] [3:42:1] Generators of the group modulo torsion
j 21764027392/18837 j-invariant
L 7.3783547060139 L(r)(E,1)/r!
Ω 2.4196431460442 Real period
R 0.76233914059575 Regulator
r 2 Rank of the group of rational points
S 0.99999999999987 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 100464r1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations