Cremona's table of elliptic curves

Curve 5100k1

5100 = 22 · 3 · 52 · 17



Data for elliptic curve 5100k1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 17+ Signs for the Atkin-Lehner involutions
Class 5100k Isogeny class
Conductor 5100 Conductor
∏ cp 84 Product of Tamagawa factors cp
deg 4032 Modular degree for the optimal curve
Δ -46473750000 = -1 · 24 · 37 · 57 · 17 Discriminant
Eigenvalues 2- 3- 5+ -3  1  2 17+  1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,742,7113] [a1,a2,a3,a4,a6]
Generators [-2:75:1] Generators of the group modulo torsion
j 180472064/185895 j-invariant
L 4.2896439971762 L(r)(E,1)/r!
Ω 0.74915435101164 Real period
R 0.068166447106146 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 20400bx1 81600l1 15300w1 1020d1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations