Cremona's table of elliptic curves

Curve 5124b1

5124 = 22 · 3 · 7 · 61



Data for elliptic curve 5124b1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 61- Signs for the Atkin-Lehner involutions
Class 5124b Isogeny class
Conductor 5124 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 5328 Modular degree for the optimal curve
Δ -48206592 = -1 · 28 · 32 · 73 · 61 Discriminant
Eigenvalues 2- 3-  4 7+ -4  4  5  0 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-3421,75887] [a1,a2,a3,a4,a6]
j -17300948475904/188307 j-invariant
L 3.6433780972319 L(r)(E,1)/r!
Ω 1.8216890486159 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 20496r1 81984d1 15372d1 128100k1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations