Cremona's table of elliptic curves

Curve 5133c1

5133 = 3 · 29 · 59



Data for elliptic curve 5133c1

Field Data Notes
Atkin-Lehner 3- 29- 59- Signs for the Atkin-Lehner involutions
Class 5133c Isogeny class
Conductor 5133 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 992 Modular degree for the optimal curve
Δ 5133 = 3 · 29 · 59 Discriminant
Eigenvalues  2 3-  4 -1  2 -2  6 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-46,-137] [a1,a2,a3,a4,a6]
j 11000295424/5133 j-invariant
L 7.3197849560275 L(r)(E,1)/r!
Ω 1.8299462390069 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 82128q1 15399b1 128325i1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations