Cremona's table of elliptic curves

Curve 5135a1

5135 = 5 · 13 · 79



Data for elliptic curve 5135a1

Field Data Notes
Atkin-Lehner 5+ 13- 79+ Signs for the Atkin-Lehner involutions
Class 5135a Isogeny class
Conductor 5135 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 7216 Modular degree for the optimal curve
Δ -651904296875 = -1 · 511 · 132 · 79 Discriminant
Eigenvalues -2  1 5+  3 -1 13- -6  4 Hecke eigenvalues for primes up to 20
Equation [0,1,1,1204,-34964] [a1,a2,a3,a4,a6]
j 192860111384576/651904296875 j-invariant
L 0.9281813163137 L(r)(E,1)/r!
Ω 0.46409065815685 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 82160l1 46215j1 25675b1 66755f1 Quadratic twists by: -4 -3 5 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations