Cremona's table of elliptic curves

Curve 51675c1

51675 = 3 · 52 · 13 · 53



Data for elliptic curve 51675c1

Field Data Notes
Atkin-Lehner 3+ 5+ 13+ 53- Signs for the Atkin-Lehner involutions
Class 51675c Isogeny class
Conductor 51675 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 51840 Modular degree for the optimal curve
Δ -49123546875 = -1 · 33 · 56 · 133 · 53 Discriminant
Eigenvalues  0 3+ 5+  4  3 13+ -6 -7 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-333,-10807] [a1,a2,a3,a4,a6]
j -262144000/3143907 j-invariant
L 0.96224822164578 L(r)(E,1)/r!
Ω 0.48112411005671 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2067b1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations