Cremona's table of elliptic curves

Curve 5200bg1

5200 = 24 · 52 · 13



Data for elliptic curve 5200bg1

Field Data Notes
Atkin-Lehner 2- 5- 13- Signs for the Atkin-Lehner involutions
Class 5200bg Isogeny class
Conductor 5200 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 576 Modular degree for the optimal curve
Δ -2080000 = -1 · 28 · 54 · 13 Discriminant
Eigenvalues 2-  0 5-  3 -3 13- -1 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,25,50] [a1,a2,a3,a4,a6]
j 10800/13 j-invariant
L 1.7475243018448 L(r)(E,1)/r!
Ω 1.7475243018448 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 1300f1 20800dm1 46800fk1 5200o1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations