Cremona's table of elliptic curves

Curve 52038bq3

52038 = 2 · 32 · 72 · 59



Data for elliptic curve 52038bq3

Field Data Notes
Atkin-Lehner 2- 3- 7- 59- Signs for the Atkin-Lehner involutions
Class 52038bq Isogeny class
Conductor 52038 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ -56119988685240774 = -1 · 2 · 39 · 76 · 594 Discriminant
Eigenvalues 2- 3-  2 7- -4  6  2 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,95026,1644563] [a1,a2,a3,a4,a6]
Generators [5526:156533:8] Generators of the group modulo torsion
j 1106469823607/654337494 j-invariant
L 10.917251210688 L(r)(E,1)/r!
Ω 0.21497407942777 Real period
R 3.1740021982365 Regulator
r 1 Rank of the group of rational points
S 1.0000000000006 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 17346m4 1062h4 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations