Cremona's table of elliptic curves

Curve 52290q4

52290 = 2 · 32 · 5 · 7 · 83



Data for elliptic curve 52290q4

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7+ 83- Signs for the Atkin-Lehner involutions
Class 52290q Isogeny class
Conductor 52290 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 4.4145568555382E+20 Discriminant
Eigenvalues 2+ 3- 5+ 7+  0  6 -6 -8 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-2094120,582433870] [a1,a2,a3,a4,a6]
Generators [1343:13148:1] Generators of the group modulo torsion
j 1393159992081172398721/605563354669169610 j-invariant
L 3.6790206280011 L(r)(E,1)/r!
Ω 0.1506289541146 Real period
R 3.05304900506 Regulator
r 1 Rank of the group of rational points
S 1.0000000000159 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 17430w3 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations